28 research outputs found

    Time Synchronization and Its Applications in Wireless Sensor Networks

    Get PDF
    Time synchronization is an essential component of wireless sensor networks (WSNs) that play a key role in the thriving Internet of Things (IoT), supporting IoT applications from large-scale monitoring & event detection to collaborative interactions. The large-scale applications based on resource-constrained sensor nodes promote the development of WSN time synchronization towards the three major aspects of lower energy consumption, lower computational complexity, and higher multi-hop time synchronization accuracy. It is these three aspects that we focus on in our contributions to the development of WSN time synchronization, which are presented in this thesis together with their applications to optimal bundling and node identification

    Optimal Message Bundling with Delay and Synchronization Constraints in Wireless Sensor Networks.

    Get PDF
    Message bundling is an effective way to reduce the energy consumption for message transmissions in wireless sensor networks. However, bundling more messages could increase both end-to-end delay and message transmission interval; the former needs to be maintained within a certain value for time-sensitive applications like environmental monitoring, while the latter affects time synchronization accuracy when the bundling includes synchronization messages as well. Taking as an example a novel time synchronization scheme recently proposed for energy efficiency, we propose an optimal message bundling approach to reduce the message transmissions while maintaining the user-defined requirements on end-to-end delay and time synchronization accuracy. Through translating the objective of joint maintenance to an integer linear programming problem, we compute a set of optimal bundling numbers for the sensor nodes to constrain their link-level delays, thereby achieve and maintain the required end-to-end delay and synchronization accuracy while the message transmission is minimized.Comment: 6 pages, 6 figure

    On the practical implementation of propagation delay and clock skew compensated high-precision time synchronization schemes with resource-constrained sensor nodes in multi-hop wireless sensor networks

    Get PDF
    In wireless sensor networks (WSNs), implementing a high-precision time synchronization scheme on resource-constrained sensor nodes is a major challenge. Our investigation of the practical implementation on a real testbed of the state-of-the-art WSN time synchronization scheme based on the asynchronous source clock frequency recovery and the reverse two-way message exchange, which can compensate for both propagation delay and clock skew for higher precision, reveals that its performance on battery-powered, low-complexity sensor nodes is not up to that predicted from simulation experiments due to the limited precision floating-point arithmetic of sensor nodes. Noting the lower computational capability of typical sensor nodes and its impact on time synchronization, we propose an asymmetric high-precision time synchronization scheme that can provide high-precision time synchronization even with resource-constrained sensor nodes in multi-hop WSNs. In the proposed scheme, all synchronization-related computations are done at the head node equipped with abundant computing and power resources, while the sensor nodes are responsible for timestamping only. Experimental results with a testbed based on TelosB motes running TinyOS demonstrate that the proposed time synchronization scheme can avoid time synchronization errors resulting from the single-precision floating-point arithmetic of the resource-constrained sensor nodes and achieve microsecond-level time synchronization accuracy in multi-hop WSNs.Comment: 20 pages, 10 figure

    On the Practical Implementation of Propagation Delay and Clock Skew Compensated High-Precision Time Synchronization Schemes with Resource-Constrained Sensor Nodes in Multi-Hop Wireless Sensor Networks

    Get PDF
    In wireless sensor networks (WSNs), implementing a high-precision time synchronization scheme on resource-constrained sensor nodes is a major challenge. Our investigation of the practical implementation on a real testbed of the state-of-the-art WSN time synchronization scheme based on the asynchronous source clock frequency recovery and the reverse two-way message exchange, which can compensate for both propagation delay and clock skew for higher precision, reveals that its performance on battery-powered, low-complexity sensor nodes is not up to that predicted from simulation experiments due to the limited precision floating-point arithmetic of sensor nodes. Noting the lower computational capability of typical sensor nodes and its impact on time synchronization, we propose an asymmetric high-precision time synchronization scheme that can provide high-precision time synchronization even with resource-constrained sensor nodes in multi-hop WSNs. In the proposed scheme, all synchronization-related computations are done at the head node equipped with abundant computing and power resources, while the sensor nodes are responsible for timestamping only. Experimental results with a testbed based on TelosB motes running TinyOS demonstrate that the proposed time synchronization scheme can avoid time synchronization errors resulting from the single-precision floating-point arithmetic of the resource-constrained sensor nodes and achieve microsecond-level time synchronization accuracy in multi-hop WSNs

    A Beaconless Asymmetric Energy-Efficient Time Synchronization Scheme for Resource-Constrained Multi-Hop Wireless Sensor Networks

    Get PDF
    The ever-increasing number of WSN deployments based on a large number of battery-powered, low-cost sensor nodes, which are limited in their computing and power resources, puts the focus of WSN time synchronization research on three major aspects, i.e., accuracy, energy consumption and computational complexity. In the literature, the latter two aspects have not received much attention compared to the accuracy of WSN time synchronization. Especially in multi-hop WSNs, intermediate gateway nodes are overloaded with tasks for not only relaying messages but also a variety of computations for their offspring nodes as well as themselves. Therefore, not only minimizing the energy consumption but also lowering the computational complexity while maintaining the synchronization accuracy is crucial to the design of time synchronization schemes for resource-constrained sensor nodes. In this paper, focusing on the three aspects of WSN time synchronization, we introduce a framework of reverse asymmetric time synchronization for resource-constrained multi-hop WSNs and propose a beaconless energy-efficient time synchronization scheme based on reverse one-way message dissemination. Experimental results with a WSN testbed based on TelosB motes running TinyOS demonstrate that the proposed scheme conserves up to 95% energy consumption compared to the flooding time synchronization protocol while achieving microsecond-level synchronization accuracy.Comment: 12 pages, 16 figure
    corecore